High Speed Design Techniques

Understanding the techniques for joining fabrics together in a way that considers durability, strength, leak-tightness, comfort in wear and the aesthetics of the joints is critical to the production of successful, structurally secure fabric products. Joining textiles: Principles and applications is an authoritative guide to the key theories and methods used to join fabrics efficiently. Part one provides a clear overview of sewing technology. The mechanics of stitching, sewing and problems related to sewn textiles are discussed, along with mechanisms of sewing machines and intelligent sewing systems. Part two goes on to explore adhesive bonding of textiles, including principles, methods and applications, along with a review of bonding requirements in coating and laminating of textiles. Welding technologies are the focus of part three. Heat sealing, ultrasonic and dielectric textile welding are covered, as are laser seaming of fabrics and the properties and performance of welded or bonded seams. Finally, part four reviews applications of joining textiles such as seams in non-iron shirts and car seat coverings, joining of wearable electronic components and technical textiles, and the joining techniques involved in industrial and medical products including nonwoven materials. With its distinguished editors and international team of expert contributors, Joining textiles is an important reference work for textile product manufacturers, designers and technologists, fibre scientists, textile engineers and academics working in this area. Provides an authoritative guide to the key theories and...
methods used to efficiently join fabrics Discusses the mechanics of stitching and sewing and problems related to sewn textiles, alongside mechanisms of sewing machines, and intelligent sewing systems Explores adhesive bonding of textiles, including principles, methods and applications, along with a review of bonding requirements in coating and laminating of textiles

FPGA Prototyping by VHDL Examples

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Smart Sensors and MEMS

Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications focuses on two distinct types of gas sensors based on conducting metal oxides. Ion conduction, applied in so-called solid-state electrolytic sensors
for one, and electronic conduction used in semiconductivity gas sensors for the other. The well-known \(\lambda \)-probe, a key component to optimize combustion in car engines, is an example of the former type, and the in-cabin car air-quality control SnO2 and WO2 sensor array stands for the semiconductivity type. Chapters cover basic aspects of functioning principles and describe the technologies and challenges of present and future sensors. Provides reader background and context on sensors, principles, fabrication and applications. Includes chapters on specific technological applications, such as exhaust sensors, environmental sensors, explosive gases alarms and more. Presents a structured presentation that allows for quick reference of vital information.

Sensor Technology Handbook

4M 2006 - Second International Conference on Multi-Material Micro Manufacture covers the latest state-of-the-art research results from leading European researchers in advanced micro technologies for batch processing of metals, polymers, and ceramics, and the development of new production platforms for micro systems-based products. These contributions are from leading authors at a platform endorsed and funded by the European Union R&D community, as well as leading universities, and independent research and corporate organizations. Contains authoritative papers that reflect the latest developments in micro technologies and micro systems-based products.

FPGA Prototyping by Verilog Examples

This is the definitive work on the subject by one of the world's foremost hydrologists, designed primarily for advanced undergraduate and graduate students. 335 black-and-white illustrations. Exercises, with answers.

Dynamic System Reliability

Even if you've never touched a 3D printer, these projects will excite and empower you to learn new skills, extend your current abilities, and awaken your creative impulses. Each project uses a unique combination of electronics, hand assembly techniques, custom 3D-printed parts, and software, while teaching you how to think through and execute your own ideas. Written by the founder of Printrbot, his staff, and veteran DIY authors, this book of projects exemplifies the broad range of highly personalized, limit-pushing project possibilities of 3D printing when combined with affordable electronic components and materials. In Make: 3D Printing Projects, you'll: Print and assemble a modular lamp that's suitable for beginners--and quickly gets you incorporating electronics into 3D-printed structures. Learn about RC vehicles by fabricating--and driving--your own sleek, shiny, and fast Inverted Trike. Model a 1950s-style Raygun Pen through a step-by-step primer on...
how to augment an existing object through rapid prototyping. Fabricate a fully functional, battery-powered screwdriver, while learning how to tear down and reconstruct your own tools. Get hands-on with animatronics by building your own set of life-like mechanical eyes. Make a Raspberry Pi robot that rides a monorail of string, can turn corners, runs its own web server, streams video, and is remote-controlled from your phone. Build and customize a bubble-blowing robot, flower watering contraption, and a DIY camera gimbal.

Gas Sensors Based on Conducting Metal Oxides

The Electrical Engineer's Handbook is an invaluable reference source for all practicing electrical engineers and students. Encompassing 79 chapters, this book is intended to enlighten and refresh knowledge of the practicing engineer or to help educate engineering students. This text will most likely be the engineer’s first choice in looking for a solution; extensive, complete references to other sources are provided throughout. No other book has the breadth and depth of coverage available here. This is a must-have for all practitioners and students! The Electrical Engineer's Handbook provides the most up-to-date information in: Circuits and Networks, Electric Power Systems, Electronics, Computer-Aided Design and Optimization, VLSI Systems, Signal Processing, Digital Systems and Computer Engineering, Digital Communication and Communication Networks, Electromagnetics and Control and Systems. About the Editor-in-Chief Wai-Kai Chen is Professor and Head Emeritus of the Department of Electrical Engineering and Computer Science at the University of Illinois at Chicago. He has extensive experience in education and industry and is very active professionally in the fields of circuits and systems. He was Editor-in-Chief of the IEEE Transactions on Circuits and Systems, Series I and II, President of the IEEE Circuits and Systems Society and is the Founding Editor and Editor-in-Chief of the Journal of Circuits, Systems and Computers. He is the recipient of the Golden Jubilee Medal, the Education Award, and the Meritorious Service Award from the IEEE Circuits and Systems Society, and the Third Millennium Medal from the IEEE. Professor Chen is a fellow of the IEEE and the American Association for the Advancement of Science. * 77 chapters encompass the entire field of electrical engineering. * THOUSANDS of valuable figures, tables, formulas, and definitions. * Extensive bibliographic references.

Comprehensive Microsystems

The new generation of 32-bit PIC microcontrollers can be used to solve the increasingly complex embedded system design challenges faced by engineers today. This book teaches the basics of 32-bit C programming, including an introduction to the PIC 32-bit C compiler. It includes a full description of the architecture of 32-bit PICs and their applications, along with coverage of the relevant development and debugging tools. Through a series of fully realized example projects, Dogan Ibrahim demonstrates how engineers can harness the power of this new technology to optimize their embedded designs.
With this book you will learn: The advantages of 32-bit PICs The basics of 32-bit PIC programming The detail of the architecture of 32-bit PICs How to interpret the Microchip data sheets and draw out their key points How to use the built-in peripheral interface devices, including SD cards, CAN and USB interfacing How to use 32-bit debugging tools such as the ICD3 in-circuit debugger, mikroCD in-circuit debugger, and Real Ice emulator Helps engineers to get up and running quickly with full coverage of architecture, programming and development tools Logical, application-oriented structure, progressing through a project development cycle from basic operation to real-world applications Includes practical working examples with block diagrams, circuit diagrams, flowcharts, full software listings an in-depth description of each operation

Analysis and Design Principles of MEMS Devices

ARM-based Microcontroller Projects Using mbed gives readers a good understanding of the basic architecture and programming of ARM-based microcontrollers using ARM’s mbed software. The book presents the technology through a project-based approach with clearly structured sections that enable readers to use or modify them for their application. Sections include: Project title, Description of the project, Aim of the project, Block diagram of the project, Circuit diagram of the project, Construction of the project, Program listing, and a Suggestions for expansion. This book will be a valuable resource for professional engineers, students and researchers in computer engineering, computer science, automatic control engineering and mechatronics. Includes a wide variety of projects, such as digital/analog inputs and outputs (GPIO, ADC, DAC), serial communications (UART, 12C, SPI), WIFI, Bluetooth, DC and servo motors Based on the popular Nucleo-L476RG development board, but can be easily modified to any ARM compatible processor Shows how to develop robotic applications for a mobile robot Contains complete mbed program listings for all the projects in the book

Beginning FPGA: Programming Metal

Thermal Sensors,

Natural hazards and anthropic activities threaten the human environment. The gathering of field data is needed so as to quantify the impact of such activities. To gather the necessary data researchers nowadays use a great variety of new instruments based on electronics. Yet, the working principles of this new instrumentation might not be well understood by some potential users. All operators of these new tools must gain proper insight so as to be able to judge whether the instrument is selected appropriately and functions adequately. This book attempts to demonstrate some characteristics that are not easy to understand by the uninitiated in the use of electronic instruments. The material presented in this book was
prepared with the purpose of reflecting the technological changes that have occurred in environmental modern instrumentation in the last few decades. The book is intended for students of hydrology, hydraulics, oceanography, meteorology and environmental sciences. Basic concepts of electronics, special physics principles and signal processing are introduced in the first chapters in order to enable the reader to follow the topics developed in the book, without any prior knowledge of these matters. The instruments are explained in detail and several examples are introduced to show their measuring limitations. Enough mathematical fundamentals are given to allow the reader to reach a good quantitative knowledge.

Embedded Systems, an Introduction Using the Renesas Rx62N Microcontroller

Create a positive testing environment and prepare students to do their best with these useful strategies based on the way each student learns, retains, and transfers information to tests.

4M 2006 - Second International Conference on Multi-Material Micro Manufacture

Here is the most comprehensive treatment available on practical temperature measurement methods using radiation thermometry. All aspects of measurement technology are covered: basic principles, types of radiation thermometers, calibration methods, and applications. Covers the latest instruments and discusses the central problem of radiation thermometry--how to infer the true temperature from the indicated temperature. Generously illustrated.

PIC32 Microcontrollers and the Digilent Chipkit

The only comprehensive reference available on Microelectromechanical Systems (MEMS). This set provides an exhaustive overview of the wide range of topics which comprise the microsystems field. This is essential reference for both academics and professionals in the field.

Handbook of Materials Failure Analysis

Smart sensors and MEMS can include a variety of devices and systems that have a high level of functionality. They do this either by integrating multiple sensing and actuating modes into one device, or else by integrating sensing and actuating with information processing, analog-to-digital conversion and memory functions. Part one outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-
nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, and advanced optical incremental sensors (encoders and interferometers), among other topics. The second part of the book describes the industrial applications of smart micro-electro-mechanical systems (MEMS). Some of the topics covered in this section include microfabrication technologies used for creating smart devices for industrial applications, microactuators, dynamic behaviour of smart MEMS in industrial applications, MEMS integrating motion and displacement sensors, MEMS print heads for industrial printing, Photovoltaic and fuel cells in power MEMS for smart energy management, and radio frequency (RF)-MEMS for smart communication microsystems. Smart sensors and MEMS is invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry, and engineers looking for industrial sensing, monitoring and automation solutions. Outlines industrial applications for smart sensors and smart MEMS Covers smart sensors including capacitive, inductive, resistive and magnetic sensors and sensors to detect radiation and measure temperature Covers smart MEMS including power MEMS, radio frequency MEMS, optical MEMS, inertial MEMS, and microreaction chambers

The Electrical Engineering Handbook

This book covers the state-of-the-art in digital games research and development for anyone working with or studying digital games and those who are considering entering into this rapidly growing industry. Many books have been published that sufficiently describe popular topics in digital games; however, until now there has not been a comprehensive book that draws the traditional and emerging facets of gaming together across multiple disciplines within a single volume.

Handbook of Digital Games

Use Arrow's affordable and breadboard-friendly FPGA development board (BeMicro MAX 10) to create a light sensor, temperature sensor, motion sensor, and the KITT car display from Knight Rider. You don't need an electronics engineering degree or even any programming experience to get the most out of Beginning FPGA: Programming Metal. Just bring your curiosity and your Field-Programmable Gate Array. This book is for those who have tinkered with Arduino or Raspberry Pi, and want to get more hands-on experience with hardware or for those new to electronics who just want to dive in. You’ll learn the theory behind FPGAs and electronics, including the math and logic you need to understand what's happening - all explained in a fun, friendly, and accessible way. It also doesn't hurt that you'll be learning VHDL, a hardware description language that is also an extremely marketable skill. What You'll Learn: Learn what an FPGA is and how it's different from a microcontroller or ASIC Set up your toolchain Use VHDL, a popular hardware description language, to tell your FPGA what to
be Explore the theory behind FPGA and electronics Use your FPGA with a variety of sensors and to talk to a Raspberry Pi Who
This Book is For: Arduino, Raspberry Pi, and other electronics enthusiasts who want a clear and practical introduction to
FPGA.

Op Amp Applications Handbook

PIC32 Microcontrollers and the Digilent chipKIT: Introductory to Advanced Projects will teach you about the architecture of
32-bit processors and the hardware details of the chipKIT development boards, with a focus on the chipKIT MX3
microcontroller development board. Once the basics are covered, the book then moves on to describe the MPLAB and MPIDE
packages using the C language for program development. The final part of the book is based on project development, with
techniques learned in earlier chapters, using projects as examples. Each project will have a practical approach, with in-depth
descriptions and program flow-charts with block diagrams, circuit diagrams, a full program listing and a follow up on testing
and further development. With this book you will learn: State-of-the-art PIC32 32-bit microcontroller architecture How to
program 32-bit PIC microcontrollers using MPIDE, MPLAB, and C language Core features of the chipKIT series development
boards How to develop simple projects using the chipKIT MX3 development board and Pmod interface cards How to develop
advanced projects using the chipKIT MX3 development boards Demonstrates how to use the PIC32 series of microcontrollers
in real, practical applications, and make the connection between hardware and software programming Usage of the
PIC32MX320F128H microcontroller, which has many features of the PIC32 device and is included on the chipKIT MX3
development board Uses the highly popular chipKIT development boards, and the PIC32 for real world applications, making
this book one of a kind

FPGA Prototyping by VHDL Examples

The recommendations summarise the state of the art. Their aim is the proper exploitation of the ground for geothermal
purposes without adversely affecting the ground or the groundwater on the one hand and the operation of the system and
nearby buildings on the other. The recommendations should be used during consulting, design, installation and operation in
order to achieve optimum and sustainable use of the ground at a specific location. Authorities responsible for supervising
and approving projects can use the recommendations as a guide when taking decisions and making stipulations. The
Geothermal Energy Study Group was set up in Bochum in 2004 and became the joint DGGV/DGGT study group in 2007.
Some 20 specialists from universities, authorities and engineering consultants are active in the group and meet two or three
times a year.
Data Conversion Handbook

This comprehensive handbook is a one-stop engineering reference. Covering data converter fundamentals, techniques, applications, and beginning with the basic theoretical elements necessary for a complete understanding of data converters, this reference covers all the latest advances in the field. This text describes in depth the theory behind and the practical design of data conversion circuits as well as describing the different architectures used in A/D and D/A converters. Details are provided on the design of high-speed ADCs, high accuracy DACs and ADCs, and sample-and-hold amplifiers. Also, this reference covers voltage sources and current reference, noise-shaping coding, and sigma-delta converters, and much more. The book's 900-plus pages are packed with design information and application circuits, including guidelines on selecting the most suitable converters for particular applications. You'll find the very latest information on: · Data converter fundamentals, such as key specifications, noise, sampling, and testing · Architectures and processes, including SAR, flash, pipelined, folding, and more · Practical hardware design techniques for mixed-signal systems, such as driving ADCs, buffering DAC outputs, sampling clocks, layout, interfacing, support circuits, and tools. · Data converter applications dealing with precision measurement, data acquisition, audio, display, DDS, software radio and many more. The accompanying CD-ROM provides software tools for testing and analyzing data converters as well as a searchable pdf version of the text. * Brings together a huge amount of information impossible to locate elsewhere. * Many recent advances in converter technology simply aren't covered in any other book. * A must-have design reference for any electronics design engineer or technician.

Designing Embedded Systems with 32-Bit PIC Microcontrollers and MikroC

FPGA Prototyping Using Verilog Examples will provide you with a hands-on introduction to Verilog synthesis and FPGA programming through a “learn by doing” approach. By following the clear, easy-to-understand templates for code development and the numerous practical examples, you can quickly develop and simulate a sophisticated digital circuit, realize it on a prototyping device, and verify the operation of its physical implementation. This introductory text that will provide you with a solid foundation, instill confidence with rigorous examples for complex systems and prepare you for future development tasks.

Dynamics of Fluids in Porous Media

Introducing the fields of nanomaterials and devices, and their applications across a wide range of academic disciplines and industry sectors, Donglu Shi bridges knowledge acquisition and practical work, providing a starting point for the research and development of applications. The book describes characterization of nanomaterials, their preparation methods and
performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industry sectors, such as lighting, energy, bioengineering and medicine / medical devices. Key nanomaterial types are covered, such as carbon nanotubes, nanobiomaterials, nano-magnetic materials, semiconductor materials and nanocomposites. Shi also provides detailed coverage of key emerging technologies such as DNA nanotechnology and spintronics. The resulting text is equally relevant for advanced students (senior and graduate) and for engineers and scientists from a variety of different academic backgrounds working in the multi-disciplinary field of nanotechnology. Provides detailed guidance for the characterization of nanomaterials, their preparation, and performance testing Explains the principles and challenges of the design and development of nano-scale devices Explores applications through cases taken from a range of different sectors, including electronics, energy and medicine.

Joining Textiles

This book explores the world of microcontroller development through friendly lessons and progressively challenging projects, which will have you blink LEDs, make music with buzzers & interact with different sensors like accelerometers and temperature sensors. This book is focused on the MSP-EXP430G2 LaunchPad Evaluation Kit, which is a complete microcontroller development platform that includes everything you need to start creating microcontroller-based projects. Many of the 25+ projects will also leverage external components, such as the highly-integrated Educational BoosterPack, which is a modular extension to the LaunchPad and includes many components such as an RGB LED, character LCD & potentiometer. This book provides helpful guides that break down hardware circuits through visual diagrams and includes fully-commented code examples. Concepts are broken down and explained in an easy to follow language and analogies to help you understand the principles behind each project/system. The projects will encourage you to use and even combine the fundamental concepts to develop your ideas in creating new microcontroller solutions. Coverage includes: Digital Input/Output: buttons, LEDs, turning anything into a button Analog Input/Output: sensors, temperature, accelerometer, potentiometer, etc. Programming fundamentals: conditional branches & loops, flow, logic, number systems Pulse-Width Modulation (PWM): square wave, buzzer, analog signal simulation Serial Communication: UART, SPI & I2C Code development using Energia, a free, open-source code editor and compiler Debugging through serial communication with a computer Interfacing with external components such as LEDs, buzzers, potentiometers, sensors & more. With the help of this book, you will be challenged to think about developing your own unique microcontroller-based application, and you will be equipped to start solving various problems, adding intelligence to existing products, or even developing your own innovative creations with a LaunchPad development kit. Includes over 25 projects which focuses on a learn by doing approach Contains easy to follow diagrams and code examples Covers Programming fundamentals, such as conditional branches and loops, flow, logic, number systems
Theory and Practice of Radiation Thermometry

A complete and up-to-date op amp reference for electronics engineers from the most famous op amp guru.

Process Plant Layout

A hands-on introduction to FPGA prototyping and SoC design. This is the successor edition of the popular FPGA Prototyping by Verilog Examples text. It follows the same “learning-by-doing” approach to teach the fundamentals and practices of HDL synthesis and FPGA prototyping. The new edition uses a coherent series of examples to demonstrate the process to develop sophisticated digital circuits and IP (intellectual property) cores, integrate them into an SoC (system on a chip) framework, realize the system on an FPGA prototyping board, and verify the hardware and software operation. The examples start with simple gate-level circuits, progress gradually through the RT (register transfer) level modules, and lead to a functional embedded system with custom I/O peripherals and hardware accelerators. Although it is an introductory text, the examples are developed in a rigorous manner, and the derivations follow the strict design guidelines and coding practices used for large, complex digital systems. The book is completely updated and uses the SystemVerilog language, which “absorbs” the Verilog language. It presents the hardware design in the SoC context and introduces the hardware-software co-design concept. Instead of treating examples as isolated entities, the book integrates them into a single coherent SoC platform that allows readers to explore both hardware and software “programmability” and develop complex and interesting embedded system projects. The new edition: Adds four general-purpose IP cores, which are multi-channel PWM (pulse width modulation) controller, I2C controller, SPI controller, and XADC (Xilinx analog-to-digital converter) controller. Introduces a music synthesizer constructed with a DDFS (direct digital frequency synthesis) module and an ADSR (attack-decay-sustain-release) envelope generator. Expands the original video controller into a complete stream based video subsystem that incorporates a video synchronization circuit, a test-pattern generator, an OSD (on-screen display) controller, a sprite generator, and a frame buffer. Provides a detailed discussion on blocking and nonblocking statements and coding styles. Describes basic concepts of software-hardware co-design with Xilinx MicroBlaze MCS soft-core processor. Provides an overview of bus interconnect and interface circuit. Presents basic embedded system software development. Suggests additional modules and peripherals for interesting and challenging projects. FPGA Prototyping by SystemVerilog Examples makes a natural companion text for introductory and advanced digital design courses and embedded system courses. It also serves as an ideal self-teaching guide for practicing engineers who wish to learn more about this emerging area of interest.

Nanomaterials and Devices
Thermal Sensors is intended as a comprehensive and accessible reference for designers and users of thermal sensors. Many different physical quantities can be converted easily and accurately into temperature differences using thermal techniques. These temperature differences can be detected with temperature and temperature-difference sensors. In a thermal sensor the thermal converter and the temperature sensor are combined in a single accurate device. This book gives an overview and deals with the design aspects of thermal and temperature sensors, with an emphasis on sensors based on silicon technology. The temperature sensors described are based on the use of various types of sensitive elements, such as platinum resistors, thermistors and special integrated circuits. The thermal sensors described include flow, conductivity, infrared, vacuum, humidity and calorimetric sensors, and ac-dc converters, thus providing a comprehensive overview of all thermal sensors, with practical examples of each type.

Photodiode Amplifiers: OP AMP Solutions

No matter where you are on the learning curve, this one-stop sourcebook delivers the kind of previously hard-to-find practical information you'll appreciate - and the wide range of application circuit alternatives you need - to optimize the noise, offset, bandwidth, and stability performance of photodiode amplifiers. Featuring the insights and accumulated knowledge that could only come from the world's number one authority on the subject, this is no scholarly tome but a hands-on reference - one that provides you with generalized circuit solutions that quickly adapt to specific design and application requirements. Inside, you'll find clear, complete, and largely stand-alone discussions of such topics as how the op amp current-to-voltage converter serves as the basic photodiode amplifier; the role of photodiode capacitance in an amplifier's AC response, along with design equations for optimum phase compensation; noise analysis, identification, and reduction; and wideband, high-gain, and position-sensing photodiode amplifiers. In all, this information-packed guide is without question the photodiode "bible" for anyone dealing with electronic design issues.

Internet Technologies Handbook

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level
textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field. * Presents the analysis and design principles of MEMS devices more systematically than ever before. * Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures * A problem section is included at the end of each chapter with answers provided at the end of the book.

Introduction to Modern Instrumentation

Billions of microcontrollers are sold each year to create embedded systems for a wide range of products. An embedded system is an application-specific computer system which is built into a larger system or device. Using a computer system offers many benefits such as sophisticated control, precise timing, low unit cost, low development cost, high flexibility, small size, and low weight. These basic characteristics can be used to improve the overall system or device in various ways: Improved performance More functions and features Reduced cost Increased dependabilityThis book uses the Renesas RX62N family of processors to demonstrate concepts with hands-on examples complete with source code targeting the YRDKRX62N evaluation board. The 32-bit RX processor core provides remarkable instruction throughput, with high clock rates and hardware support for floating-point and digital-signal processing instructions. The core is also quite agile, responding to fast interrupts in 5 clock cycles. These processors offer a wide range of sophisticated peripherals to simplify interfacing with and controlling external devices.

Test Success in the Brain-Compatible Classroom

This product, consisting of a CD-ROM and a book, deals with the numerical simulation of reactive transport in porous media using the simulation package SHEMAT/Processing SHEMAT. SHEMAT (Simulator for HEat and MAss Transport) is an easy-to-use, general-purpose reactive transport simulation code for a wide variety of thermal and hydrogeological problems in two or three dimensions. The book is a richly documented manual for users of this software which discusses in detail the coded physical and chemical equations. Thus, it provides the in-depth background required by those who want to apply the code for solving advanced technical and scientific problems. The enclosed companion CD-ROM contains the software and data for all of the case studies. The software includes user-friendly pre- and post-processors which make it very easy to set up a model, run it and view the results, all from one platform. Therefore, the software is also very suitable for academic or technical "hands-on" courses for simulating flow, transport of heat and mass, and chemical reactions in porous media. You can find a link to the updated software on springer.com.

3D Printing Projects
This book enables design engineers to be more effective in designing discrete and integrated circuits by helping them understand the role of analog devices in their circuit design. Analog elements are at the heart of many important functions in both discrete and integrated circuits, but from a design perspective the analog components are often the most difficult to understand. Examples include operational amplifiers, D/A and A/D converters and active filters. Effective circuit design requires a strong understanding of the operation of these analog devices and how they affect circuit design. Comprehensive coverage of analog circuit components for the practicing engineer Market-validated design information for all major types of linear circuits Includes practical advice on how to read op amp data sheets and how to choose off-the-shelf op amps Full chapter covering printed circuit board design issues

ARM-based Microcontroller Projects Using mbed

Without sensors most electronic applications would not exist they perform a vital function, namely providing an interface to the real world. The importance of sensors, however, contrasts with the limited information available on them. Today's smart sensors, wireless sensors, and microtechnologies are revolutionizing sensor design and applications. This volume is an up-to-date and comprehensive sensor reference guide to be used by engineers and scientists in industry, research, and academia to help with their sensor selection and system design. It is filled with hard-to-find information, contributed by noted engineers and companies working in the field today. The book will offer guidance on selecting, specifying, and using the optimum sensor for any given application. The editor-in-chief, Jon Wilson, has years of experience in the sensor industry and leads workshops and seminars on sensor-related topics. In addition to background information on sensor technology, measurement, and data acquisition, the handbook provides detailed information on each type of sensor technology, covering: technology fundamentals sensor types, w/ advantages/disadvantages manufacturers selecting and specifying sensors applicable standards (w/ urls of related web sites) interfacing information, with hardware and software info design techniques and tips, with design examples latest and future developments The handbook also contains information on the latest MEMS and nanotechnology sensor applications. In addition, a CD-ROM will accompany the volume containing a fully searchable pdf version of the text, along with various design tools and useful software. *the only comprehensive book on sensors available!* *jam-packed with over 800 pages of techniques and tips, detailed design examples, standards, hardware and software interfacing information, and manufacturer pros/cons to help make the best sensor selection for any design* *covers sensors from A to Z* from basic technological fundamentals, to cutting-edge info. on the latest MEMS and the hottest nanotechnology applications

RTL Hardware Design Using VHDL
Process Plant Layout, Second Edition, explains the methodologies used by professional designers to layout process equipment and pipework, plots, plants, sites, and their corresponding environmental features in a safe, economical way. It is supported with tables of separation distances, rules of thumb, and codes of practice and standards. The book includes more than seventy-five case studies on what can go wrong when layout is not properly considered. Sean Moran has thoroughly rewritten and re-illustrated this book to reflect advances in technology and best practices, for example, changes in how designers balance layout density with cost, operability, and safety considerations. The content covers the ‘why’ underlying process design company guidelines, providing a firm foundation for career growth for process design engineers. It is ideal for process plant designers in contracting, consultancy, and for operating companies at all stages of their careers, and is also of importance for operations and maintenance staff involved with a new build, guiding them through plot plan reviews. Based on interviews with over 200 professional process plant designers Explains multiple plant layout methodologies used by professional process engineers, piping engineers, and process architects Includes advice on how to choose and use the latest CAD tools for plant layout Ensures that all methodologies integrate to comply with worldwide risk management legislation

Numerical Simulation of Reactive Flow in Hot Aquifers

This book uses a "learn by doing" approach to introduce the concepts and techniques of VHDL and FPGA to designers through a series of hands-on experiments. FPGA Prototyping by VHDL Examples provides a collection of clear, easy-to-follow templates for quick code development; a large number of practical examples to illustrate and reinforce the concepts and design techniques; realistic projects that can be implemented and tested on a Xilinx prototyping board; and a thorough exploration of the Xilinx PicoBlaze soft-core microcontroller.

Getting Started with the MSP430 Launchpad

The skills and guidance needed to master RTL hardware design This book teaches readers how to systematically design efficient, portable, and scalable Register Transfer Level (RTL) digital circuits using the VHDL hardware description language and synthesis software. Focusing on the module-level design, which is composed of functional units, routing circuit, and storage, the book illustrates the relationship between the VHDL constructs and the underlying hardware components, and shows how to develop codes that faithfully reflect the module-level design and can be synthesized into efficient gate-level implementation. Several unique features distinguish the book: * Coding style that shows a clear relationship between VHDL constructs and hardware components * Conceptual diagrams that illustrate the realization of VHDL codes * Emphasis on the code reuse * Practical examples that demonstrate and reinforce design concepts, procedures, and techniques * Two
chapters on realizing sequential algorithms in hardware * Two chapters on scalable and parameterized designs and coding * One chapter covering the synchronization and interface between multiple clock domains Although the focus of the book is RTL synthesis, it also examines the synthesis task from the perspective of the overall development process. Readers learn good design practices and guidelines to ensure that an RTL design can accommodate future simulation, verification, and testing needs, and can be easily incorporated into a larger system or reused. Discussion is independent of technology and can be applied to both ASIC and FPGA devices. With a balanced presentation of fundamentals and practical examples, this is an excellent textbook for upper-level undergraduate or graduate courses in advanced digital logic. Engineers who need to make effective use of today's synthesis software and FPGA devices should also refer to this book.

FPGA Prototyping by SystemVerilog Examples

A comprehensive reference that addresses the need for solid understanding of the operation of IP networks, plus optimization and management techniques to keep those networks running at peak performance. Uniquely distinguished from other books on IP networks, as it focuses on operation and management support, and is not just another treatise on protocol theory. Includes many practical case studies as further illustration of the concepts discussed.

Shallow Geothermal Systems

Handbook of Materials Failure Analysis: With Case Studies from the Construction Industry provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios including material defects, mechanical failure due to various causes, and improper material selection and/or corrosive environment. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to chapters on analysis of materials failure from various causes. Failure can occur for several reasons, including: materials defects-related failure, materials design-related failure, or corrosion-related failures. The suitability of the materials to work in a definite environment is an important issue. The results of these failures can be catastrophic in the worst case scenarios, causing loss of life. This important reference covers the most common types of materials failure, and provides possible solutions. Provides the most up-to-date and balanced coverage of failure analysis, combining foundational knowledge and current research on the latest developments and innovations in the field. Offers an ideal accompaniment for those interested in materials forensic investigation, failure of materials, static failure analysis, dynamic failure analysis, and fatigue life prediction. Presents compelling new case studies from key industries to demonstrate concepts and to assist users in avoiding costly errors that could result in catastrophic events.
Linear Circuit Design Handbook

A hands-on introduction to FPGA prototyping and SoC design This Second Edition of the popular book follows the same “learning-by-doing” approach to teach the fundamentals and practices of VHDL synthesis and FPGA prototyping. It uses a coherent series of examples to demonstrate the process to develop sophisticated digital circuits and IP (intellectual property) cores, integrate them into an SoC (system on a chip) framework, realize the system on an FPGA prototyping board, and verify the hardware and software operation. The examples start with simple gate-level circuits, progress gradually through the RT (register transfer) level modules, and lead to a functional embedded system with custom I/O peripherals and hardware accelerators. Although it is an introductory text, the examples are developed in a rigorous manner, and the derivations follow strict design guidelines and coding practices used for large, complex digital systems. The new edition is completely updated. It presents the hardware design in the SoC context and introduces the hardware-software co-design concept. Instead of treating examples as isolated entities, the book integrates them into a single coherent SoC platform that allows readers to explore both hardware and software “programmability” and develop complex and interesting embedded system projects. The revised edition: Adds four general-purpose IP cores, which are multi-channel PWM (pulse width modulation) controller, I2C controller, SPI controller, and XADC (Xilinx analog-to-digital converter) controller. Introduces a music synthesizer constructed with a DDFS (direct digital frequency synthesis) module and an ADSR (attack-decay-sustain-release) envelop generator. Expands the original video controller into a complete stream-based video subsystem that incorporates a video synchronization circuit, a test pattern generator, an OSD (on-screen display) controller, a sprite generator, and a frame buffer. Introduces basic concepts of software-hardware co-design with Xilinx MicroBlaze MCS soft-core processor. Provides an overview of bus interconnect and interface circuit. Introduces basic embedded system software development. Suggests additional modules and peripherals for interesting and challenging projects. The FPGA Prototyping by VHDL Examples, Second Edition makes a natural companion text for introductory and advanced digital design courses and embedded system course. It also serves as an ideal self-teaching guide for practicing engineers who wish to learn more about this emerging area of interest.

Copyright code: 12fabe971300622a3f2f576f18ccfc21